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ABSTRACT

Harmonic Balance is nowadays the most
efficient method for the periodic steady state analysis
of microwave circuits. Unfortunately this method
cannot conveniently handle realistic wide band input
signals, because its computation time grows rapidly
with the number of harmonics. A new method is
proposed which resolves the above mentioned
limitation of the Harmonic Balance. A substantial
computation time saving is obtained with respect to
the Harmonic Balance.

I - INTRODUCTION

Harmonic Balance (HB) technique [1] is today the
most widely used method for calculating the steady
state response of nonlinear microwave circuits. This
is based on the solution of the circuit equation in the
frequency domain, over the entire period of the steady
state regime. The use of DFT in order to compute the
state variable harmonics to be balanced, produces
however a system of tightly coupled equations. For
this reason, in general, only Newton’s method is
successful for the solution of the HB equation [2] and

the computation cost varies as N3 where N is the
number of significant harmonics of the steady state

regime. When N is large, this cost becomes
prohibitive. Hence HB technique is only suitable for

circuit analysis under monochromatic excitation.
Realistic wide band input signals like a square w~ve
cannot be carried conveniently.

Alternatively, Time domain “brute force”
integration method exhibits a series of loosely
coupled equations that have to be solved from the
time origin till the transient has died out. This
method is more efficient than HB if the transient
disappears after a few periods. However, the transient
of microwave circuits is usually many order larger
than the period of the microwave signal. Therefore

the computation cost for finding the steady state is
prohibitive.

This paper presents a new and general purpose
technique termed “Compressed Transient” for
formulating circuit steady state equations. This
method produces a time domain equation system
which exhibits an artificial and short transient, so
that the desired steady state response is obtained after mm
a few periods, irrespective of the input signal period.

As a consequence, a substantial computation time
saving of a factor 10 and more is obtained, if
compared to the HB technique.

In the following, we will present the Compressed
Transient (CT) technique and a wide-band amplifier
example which shows the efficiency and effectiveness
of the new method. In the conclusion, the extension
of the presented method to multitone analysis is
indicated.

II - THE COMPRESSED TRANSIENT
TECHNIQUE

11.1 Formulation

In the HB technique, the circuit is generally
divided in a linear and a nonlinear subcircuits. The
equation to be solved is discrete in the frequency
domain and has the general form below.

[

X~ = Al(ko())Y~

–N<k<N

y(t) = f(x(l))

where Xk, yk and Gk

+ A2(kcoO)Gk

(1)

are respectively the kth

frequency components of the state variables x(t), the

electrical variables at the nonlinear subcircuit ports

-y(t) and the driving sources g(t). coo is the

fundamental frequency of the steady state regime,
y(t) = f(x(t)) represents the intrinsic characteristic

of the nonlinear subcircuit, and Al(m), AZ (CO) are
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the transfert functions characterizing the linear
subcircuit.

An important consideration from equation (1) is
to be kept in mind. The steady state response of the
circuit de~ends solelv on the value taken by
Al(m) and’ A2 (CO)

fundamental coo.

Let us consider

which in contrast
frequency domain.

at DC and multiples

the auxiliary equation
to (l), is continuous

\

–-Q<(r)<=’ (2)

y(t) = f(x(t))

of the

below,
in the

If we satisfy the following condition,

[

zil(boo)= Al(koy))

& (ho)= A2(ko()), -hI<,<N(’)

then equation (2) yields a steady state solution
identical to that produced by (1). There is therefore a
family of continuous transfert functions

~1 ((o) and ~2 (co) that exhibit the same steady

state regime as (l).
Applying the inverse Fourier transform to (2), we

find the following convolution equation

where Tmax is the maximum duration of the

impulse responses 21(t) and ti2 (t).

To obtain the steady state solution of (2),

equation (4) may be integrated from t = O until the
transient dies out at time t = tm. If fimction j’() is a

linear operator, the transient duration t~ = Tmax. In

nonlinear circuits however, ~() is nonlinear and the

transient duration t~ is larger than ~max and

depends on the decay of the impulse response til (t).

The philosophy of the compressed transient
technique is therefore to find the auxiliary transfert

functions xl (co) and X2(o) or equivalently the

impulse responses iii(t)and iiz(t)satisfying

equation (3) and exhibiting the shortest transient

possible. As Al(m) and A2(0) satisfy (3), the

resulting steady state response is identical to the one

obtained by Harmonic Balance.
For reasons beyond the scope of this summary,

we have chosen an impulse response of the general
form,

N
ii(t) = p(t) ~B~e~k@Ot (5)

k=–N

where p(t) is an exponential decay confining

function.

at
——

p(t) = ‘e ‘0 rect

(1

t–TO12

To To
(6)

is the period of the steady state response and u a

positive argument controlling the decay of the
impulse response.

Taking the Fourier transform of (5) and
introducing into (3), we find the de-embedding
equation for the complex coefficients Bk.

For illustration, if we consider a simple RC
transfert function

[

A(k(oO) =
1

1 + jka@?C

R= IOQ, C= 10pF’, (7)

coo = 27c x 10GHz and N = 10

Fig 1 gives the resulting scaled impulse responses
D(t)
— for various values of the decay factor u. One
a(o)

may observe that when a is increased, the impulse
response is well confined to the time origin.

The more the impulse response will be confined to
the time origin, the shorter the transient duration will
be.
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III - SIMULATION RESULTS

1

0

Figure 1: Auxiliary impulse responsesa(t~for varying u

11.2 Discretizing the convolution integral

Once the impulse responses til (t) and ii2 (t) are

computed, we can discretize the convolution integral
To

in (4), with a time step At < —
2N+1 ‘

in order to carry

a transient analysis. The discrete convolution
equation can then be easily put in the form

[

2N 2N

x(n) = ~y(rr - m)al(rn) + ~g(rr – rn)a2(rrr)

m=() m=O
(8)

[Y(n) = f(~(~))

where al(n) and a2 (n) are the discrete images of

Gl (t)and Gz(t).

Equation (8) may be solved from n = O until the
transient dies out. For a decay factor (X> 5, this
usually occurs very rapidly in a few periods, typically
less than 10,

We have found that the convenient decay factor
CYfor achieving a good impulse response confining
is the range 5 to 10. et<< 5 does not produce
enough impulse confining to guarantee a short
transient. On the orther hand, et>> 10 leads to
numerical instabilities in computing the coefficients
Bk as N increases.

Here it is worth noting that when a = O, no
impulse confining is done, and al(n) is just the

DFT of the discrete transfert fimction Al (kcoo ). In

this case, eq (8) is equivalent to the waveform-
balance or convolution equation already proposed by
many authors [3-5].

We have considered the analysis of a four stage
(4x300pm MESFETS) MMIC distributed amplifier
recently manufactured at Texas Instruments foundry
[6].

w“
T T]

v,.

Figure 2: 2-18 GHz MMIC Distributed Power Amplifier

This amplifier (Fig. 2) is a medium power amplifier
in the 2- 18Ghz band, exhibiting a 11°/0 added power
efficiency and a z’7°/0 drain efficiency for a
340mWhmn power density at ldB gain compression.
The analysis of the amplifier is carried with a square

wave input signal of 2GHz fimdamental frequency, at
2dB compression. The number of harmonics

considered for analysis is swept fi-om 5 to 80. Fig.3
gives the plot of simulation CPU time versus the
number of harmonics for both HB and CT techniques
on a HP9000 series 700. One may observe, as
expected the substantial saving in CPU time obtained
with the CT method. This saving goes increasing
with the number of harmonics, and is about a factor
40 for N above 20.
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Figure 3: CPU Time versus the number of harmonics for

Harmonic Balance and Compressed Transient methods

It is found from the results that a number of
harmonics of at least 50 is necessary to conveniently
represent a 10/0rise time of the square wave. Fig.4
shows the input and output voltage waveforms for
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both the HB and the CT methods. The agreement is
good. The computation time is 20 minutes for HB
and 10 seconds for CT.

Acknowledgments
‘2 ~

o 0.2 0.4 06 0.8 1 1.2 14 1.6 18 2

tfro

Figure 4a : Input voltage waveform
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Figure 4b : Output voltage waveform obtained by

Harmonic Balance and Compressed Transient
for 50 harmonics

IV - CONCLUSION

A new method termed “Compressed transient”

has been presented for the steady state analysis of
nonlinear microwave circuits, This method, like the
popular Harmonic Balance, allows to carry efficiently
circuit analysis with sinusoidal as well as realistic
wide-band input signals. A computation time saving
of’ a factor more than 10 is obtained with respect to
the Harmonic Balance. For paper length reasons, the
principle of the compressed transient was presented
only for the case of periodic steady state. This
principle can however be easily extended to 2 or 3
tones analysis using a multidimensionnal Fourier
transform representation of the signals.
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